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ABSTRACT 

When the up-link frequency band repeated by a communications 

satellite is hopped in a periodic manner,   when users are divided so that a 

group of them can transmit only when a particular frequency band is repeated, 

and when message arrivals for one user are independent of message arrivals 

for any other user,   the   users in a group are independent.     When the frequency 

hopping is done in a pseudorandom rather than a periodic manner,   the users 

are dependent.     The effect of the dependence is,   in practical cases,   to 

increase the probability of there being a large number of simultaneous users 

which increases the probability of system overload.     General expressions 

for the probability of system overload and for the fraction of the information 

lost due to overload are obtained.     These expressions illustrate the effect of 

the dependence induced by the pseudorandom frequency hopping.     Examples are 

presented. 
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The Effect of Pseudorandom Frequency Hopping on the Probability 
of Simultaneous Usage of a Communication Satellite 

An Anti-Jam,   Multiple Access Communications Satellite System 

To develop effective resistance to up-link jamming,   it is desirable to 

incorporate a form of signal processing,   frequency hopping,   in a communi- 

cations satellite repeater.     In a proposed frequency hopping satellite the 

repeater and all users are synchronized by means of a clock in the satellite. 

At the discrete times ....  — 2T, 0, T, 2T,...   the frequency band repeated by 

the satellite is selected from one of N possible bands where   N  is a power of 2. 

The selection is made by using the digits of a pseudorandom sequence which 

is generated by the satellite and by each of the users.     The basic anti-jam 

capability of this system arises from the fact that each user can determine, 

from his copy of the pseudorandom sequence,   what frequency band the 

satellite will repeat during succeeding time intervals while a hostile jammer 

cannot. 

In a communications satellite system,   users communicate in pairs 

since one must be receiving when another transmits.     If any user can com- 

municate with any other user,   message flow between one pair of users can 

interact with message flow between another pair    if   the same user is a member 

of both pairs.     On the other hand,   if each user can report back only to a 

central station and this central station can communicate with many users 



simultaneously,   this interaction between pairs does not occur.     This report 

analyzes the effect upon system behavior of frequency hopping in the satellite 

and all other forms of interaction between pairs of users is ignored. 

An attractive method of system organization for tactical communications 

when there are a large number of user pairs,   is to divide the pairs into  N 

groups and to assign one of the N satellite repeater bands to each group. 

Then all user pairs in a common group will transmit-receive only when the 

satellite repeats their frequency''".     The users will not have to frequency hop- 

This reduces the complexity of the equipment that each user must have.     If 

there are a large number of users (e. g. ,   1000)    this will represent a consider- 

able saving.     The possibility of interference between groups is also eliminated. 

The mathematical model to be described in the next section represents 

a good approximation to a realistic tactical situation. 

Mathematical Model 

Consider a large number of user pairs which are divided into   N groups 

where group   j,   1 ^ j < N,   contains   M.   pairs.     At the discrete times ...,   — 2T, 

— T, 0, T, 2T,...    a decision is made as to which group has exclusive use of a 

communications  satellite repeater for the next   T   seconds.     The decision is 

made at random and the probability that group  j   uses the repeater is   P.. 

The outcome of the decision at a given time is independent of the outcomes 

of all previous decisions. 

At the discrete times   —,  — ZT,  — T, 0, T, 2T,...    a message  may 

arrive for any of the pairs to transmit-receive providing that pair is idle.     A 

Actually the user pairs can be divided into   N/k groups where k = 1,2 , N/2 
and each group transmits when the satellite repeats any one of  k frequency 
bands.     The results of this report also apply to this case. 



pair is considered to be idle at a given time if,   in the event that no message 

arrives at that time,   the pair will have no part of a message either being 

transmitted or waiting to be transmitted during the succeeding time interval 

of length   T.     The occurrence of a message arrival for a user pair is indepen- 

dent of the occurrence of an arrival for any other pair at the same time.     The 

occurrence of an arrival for a user pair is independent of the occurrence of 

an arrival for any pair at any previous time.     For each pair  in group  j, 

1 £   j SN ,   the probability that a message arrival   occurs at any particular 

time when the pair is idle is   p..     The occurrence of a message arrival at a 

discrete time in the model represents an arrival in the interval of length   T 

immediately preceding that time in the physical process being modeled. 

User pair   i  of group  j,   1 ^ i ^ M.,   1 ^ j < N,   can transmit at an 

instantaneous rate of r .. bits per second when group j  transmits,and each 

message that arrives contains b.. bits.    The ratio  b../r.. which is the actual 

transmission time for a message is an integer multiple of  T  and is assumed 

to be the same for all users in group j (i. e. ,   b../r.. = L.T  for all  i where  L. 
ij     ij J J 

is an integer).     Where the meaning is clear the expression "transmit-receive " 

is abbreviated to "transmit" in this report. 

Succeeding sections focus on one of the groups and the subscript  j 

on the variables   P.,   p.,   and  L.   is omitted for convenience.     The results 
J       J J 

apply to any group provided the proper values of these variables are used. 

The Probability of the Occurrence of a System Overload 

Given that the satellite is repeating the frequency band of the group 

being considered,let the probability that  k   of the   m   user pairs are simultaneously 



transmitting (active) be   P(k, m) and the probability that k  or more of the  m 

pairs are simultaneously transmitting be 

m 

Q(k, m) =   YJ    p(i> m) • 0) 
i=k 

The quantity,   Q(k + 1, m),   is a measure of system performance in two ways. 

1. If a large facility is paired with  m'  small stations,   if each pair 

is in the same group,   and if the large facility can only accommo- 

date  k simultaneous transmissions,   the probability that the large 

facility becomes overloaded is   Q(k + 1, m'). 

2. In a hard-limiting satellite which is simultaneously repeating the 

transmissions of   i   users who have equal power the satellite 

output power per user (Fbwer)     is,   to a good approximation, 

(Power)    = f   (Power) /i 

where (Power) is the total satellite transmitted power and 

1 — f is the fraction of the power lost due to repeater non- 

linearities (e. g. ,   f     = 7/8 in Reference 1).     Wben the power per 

user falls below a certain threshold ((Power)    ^ (Power)     .   ), 
u mm 

performance of the communications links are degraded sharply. 

Therefore,   when the number of simultaneous user exceeds some 

number,   k,  performance is degraded sharply and the quantity, 

Q(k + 1, m) is again of interest.     For a large number of users 

this problem cannot be circumvented by merely increasing 

(Power)    since the transmitted power is severely limited by the 



weight,   size,   and configuration of the satellite in general and the 

solar cells in particular. 

Fraction of the Information that is Lost Due to Overload 

In a hard-limiting satellite when the number of equal power simul- 

taneous active users exceeds  k the down-link satellite power becomes insuf- 

ficient to support the data rate in the communications links between user pairs. 

It is assumed that performance degradation is sufficiently sharp that,   when 

the number of active users is less than or equal to   k,   messages are received 

and decoded with negligible error and when the number of active users 

exceeds   k,   messages are decoded with so many errors that they are worthless. 

When the users of the group have equal power they will all be trans- 

mitting at the same data rate  r  bits per second.    During a time interval in 

which the group transmits the average amount of information to be transmitted 

is 

m 

I   =   YJ    irTP(i, m)   bits 
i=0 

since each active user pair transmits   rT bits.     If the number of active pairs 

exceeds   k,   no  useful information is received so the average amount of infor- 

mation received is 

k 

I    =   YJ   irTP(i.m)  bits 

i=0 

The fraction of the information that is lost is 

FL(k+ l,m) = (It-Ir)/It = 

m 

2    iP(i.m) 
Li=k+1 

bT/lt] 



To evaluate F   (k + l,m) and  Q(k + l,m)   an expression for   P(i,m), 

the probability that  i of   the  m  user pairs in a group are simultaneously- 

transmitting,is needed.     This expression is derived in the following two 

sections. 

The Probability Distribution of the Time Between Transmissions of a Group 

The user pairs of a particular group may transmit during any interval 

of length   T  that the satellite repeats the frequency band of the group.     Let 

q     equal the probability that successive intervals during which pairs of a 

group can transmit are separated by   h   intervals of  length   T.     Then 

qh  = P(l-P)h h*0 (2) 

Equation (2) follows from the fact that in order for the time between trans- 

missions to be equal to hT,   the satellite must make  h   successive decisions 

to repeat the frequency band of   some other group followed by one decision 

to repeat the frequency band of the particular group. 

The Probability Distribution of the Number of Simultaneous Users 

Given that  the satellite is repeating the frequency band of the group 

being considered,   the probability that  i  of the  m  user pairs in the group are 

simultaneously active is defined to be P(i, m).     An expression for   P(i, m) is 

derived in Appendix A.     The expression involves   p,   L,   and  q     which are the 

probability that at a particular time a message arrives to be transmitted by 

a particular pair that is idle,   the number of times a pair must transmit to 

completely send a message,   and the probability that successive intervals 

during which pairs of the group can transmit are separated by  h  time intervals. 



The expression is 

'JO 

p(i,m) = (™) i q^L-m-prnd-prf-1/ 
h=0 

[L-(L-l) (l-p)h + 1]m (3) 

where 

. m.  _ m ! 
( i ' " i!(m-i)! 

When decisions as to which group transmits are made in a pseudorandom 

manner,   q,    is given by Eq.   (2).     With this form of q   ,   the sum in Eq.   (1) can 

be evaluated in closed form only for   L = 1.     For the special cases where 

M = 1 and 2,   substitution of Eq.   (1) into (2) for the case L = 1   yields 

P(0, 1) = 1 -CXj 

P(l. 1) = dj 

P(0,2) = (1 -dj)2! P(l -p + £)2/Ll - (1 -P)(l -p)2]} 

P(l,2) «aXjU-ajH Cl-(l-P) (1 -P)]/[1 -(1-P) (l-p)2]} 

P(2,2) =a2{ [1 -(1 -P)2(l -p)2]/[l-(l -P) (1 -p)2]} 

where 

ai =      l-(l-P) (l-p) 

The general expression for   L = 1 when  q,    is given by Eq.   (2) is 

j=0    '     J    1 -(1 -P) (1 -P)m+J 
(4) 



It is shown in Appendix B that as   T -> 0   so that   L — oo, 

P(i, m) -• PT(i, m) where 

PjU.m) = (^)a1(l -a)m_1 (5) 

and 

a =  lim     P(l, 1) 
L-'oo 

The form of Eq.   (5) implies that as   L -» oo the user pairs become 

independent simce   ( . ) a   (1 — a) is the probability that  i  of  m independent 

users are transmitting  if each transmits with probability  a. 

If decisions to  transmit are made in a periodic rather than a pseudo- 

random manner 

1       h = H 

%=i 

0       h / H 

where   H   is some integer.     Eq     (3) then reduces,   for arbitrary   L,   to 

T-w        v       / m.      i,,       _   .m-i P(i,m    = ( .  ) a    (1 - a   ) l        p p 

where  a    = P(l, 1)   so the users are independent. 

In summary,  pseudorandom frequency hopping introduces a depen- 

dence among the m user pairs in a group.     This dependence is not present if 

the group uses the satellite in a periodic rather than a pseudorandom manner. 

If the number of transmissions,   L,   required to send a message is  sufficiently 

large,   this dependence can be made arbitrarily small.    As will be seen from 



the discussion and examples of the following section,   this dependence is 

detrimental to system operation in cases of practical interest. 

Effect of Dependence on System Behavior 

In terms of evaluating system behavior two previously defined quan- 

tities are of particular interest.     They are the probability of an overload 

occurring, 
m 

Q(k + l,m) =     £     P(i,m)      , 
i=k+l 

and the fraction of the information which is lost, 

m m 

FL(k+l,m)=     Yi     iP(i.m)/£    iP(i,m) 
i=k+l i=0 

These quantities can be computed for any values of p,   P,   m,   k, 

and  L  from Eqs.(Z) and (3) or from Eq.   (4) for   L = 1.     The graphs of Examples 

1 and 2 show the behavior of these quantities for various values of the para- 

meters when m = 2 and m = 3. 

Example 1 

In Figure  1 the quantity Q(2, 2),   which is the probability of overload 

when  m -2 and k = 1,   is plotted as a function of a = P(l, 1).   The parameter 

P   is chosen to be   1/256 and curves for   L = 1 and L = oo are shown .      The 

parameter  p  is varied from 0 to 1  so that a varies from 0 to 1.     It can be 

shown that for a fixed value of a,   Q(2, 2) decreases monotonically as   L 

increases so that  L =  1 and  L =oo represent the extreme cases.     The value of 

Q(2, 2) does not change appreciably as   P varies from 0. 1 to 0 as long as  p 
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is adjusted to keep  a invariant.     Therefore,   Figure  1 applies to a good approxi- 

mation,   for   0 <   P <   0.1.     Figure 2 shows   F   (2, 2) for the same parameters. 

For a fixed value of a,   F    (2, 2)   decreases monotonically as   L   increases,   and 

F    (2,2)  does not change appreciably as   P  varies   from 0. 1 to 0.     This follows 

because   FL(2, 2) = Q(2, 2)/a. 

Example 2 

Figure 3 shows   Q(2, 3),   Figure 4 shows   FT (2, 3),   Figure 5 shows 

Q(3, 3),   and Figure 6 shows   F. (3, 3)  which are the quantities which determine 

system performance when  m = 3 and k = 2 and 3,   respectively.     In all cases 

curves are shown for   L = 1 and L = oo and it can be shown that for   1 <   L <  oo 

the curve for each of the four quantities lies between the respective curves 

for L =  1 and L = oo.     The figures are plotted for   P = 1/256 but apply,   to a 

good approximation,   whenever   0 <   P <   0.1. 

When m >>   1   it appears that in the cases of practical interest  k should 

satisfy the relation  m >   k >>   1   because if  k » 1  either   P(0, m) or Q(k +  1, m) 

will be large and it is desirable that both be small.     The case when m >   k >>   1 

and Q(k + l,m) <<   1 is analyzed below. 

From Eq.   (3) for arbitrary   q     and  L  the mean of the number of active 

user pairs   i is 

m 

E[i] = YJ     ip(i.m) = mP(l, 1) 

i=0 

The variance of i    is 

Var(n)  = E[( i - E[i ]f}  = J    [i-mP(l, l)]ZP(i,m) 

i=0 

= m(m - 1) P(2, 2) + mP(l, 1)  [l - mP(l, 1)] 

12 
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Two typical cases,   A and B.   of the distribution P(i, m) are shown in 

Figure 7.     The quantity  o/T = JVa.T(i )/(E i ])      is larger for case A than for 

case B.     For case A,   Q(k + 1, m) and F. (k + 1, m) are larger than for case B. 

The quantity   of i   is a rough measure of system performance.     It is not as 

precise as   Q(k + 1, m) and  F   (k + 1, m)   but it can be  computed more easily 

and presented much more compactly for arbitrary  m  than can these two 

quantities.     Figure 8 shows   of i   as a function of (X= P(l, 1) for various values 

of m  and for   L = 1 and L = oo.    It can be shown that,   for a fixed value of a, 

as L  increases monotonically from 1 to oo,   a/T  decreases monotonically. 

The curves of Figure 8 are plotted for   P = l/l28 but they apply,   to a good 

approximation,   when  0 <   P <   0.1. 

In all of the examples of this section the curves for   L * oo can also be 

interpreted as being curves for periodic frequency hopping.     Numerous values 

of  Q(k + 1, m),   Fj (k + 1, m), and  a/i    calculated from the  equations of this 

report and shown in the figures of this section have been checked by digital 

computer simulation.     The values obtained from the calculations and from the 

simulations are essentially the same. 

Discussion of Results and Conclusions 

In the examples of the previous section and probably in any example, 

system performance as measured by  Q(k + 1, m) and  F_ (k + 1, m)   is theo- 

retically improved,   when the system is not heavily overloaded,   by increasing 

L.     There are numerous ways in which  L  can be increased.     The inter-hop 

time   T   can be decreased,   the data rate of each user can be decreased thus 

causing the allowable number of simultaneous users   k to be increased,   and 

longer (larger number of bits) but fewer messages can be  sent by each user. 

17 
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However,   there are several disadvantages associated with large   L. 

which do not appear in the preceding idealized analysis.     The case   L = 1 

is inherently the simplest case and should require less equipment in the 

users' terminals.     Due to the lack of perfect synchronization of the users and 

satellite and due to switching transients,the extremes of each time interval 

cannot be used for transmissions.     This amount of time,   t   ,   which must be 
g 

essentially wasted each time the satellite frequency hops is a function of the 

complexity of the user terminals and satellite borne equipment.     As   T 

decreases,   the fraction of time that the satellite repeater can be used, 

(T — t )/T,   decreases for fixed equipment complexity which implies constant 

t   .    A good choice of the number of users in a group,   m,   and the allowable 

number of simultaneously transmitting users,   k,   depends on many factors. 

In particular it is desirable to choose m and k so that  Q(k + 1, m) and 

F   (k + l,m)  are small rather than so that they are nearly equal to what they 

would be if the users were independent.     The length (number of bits) of a 

message is usually determined by other considerations.     Finally,   another 

measure of system performance may be more realistic than   F    (k, m),   the 

fraction of the information lost.     If a message requires   L  transmissions the 

message may be worthless to the receiver when some number 0 <   n <   L of 

the transmissions are lost.     Although the number of users transmitting,   at 

successive times when the group transmits,   is highly correlated when   L, >   1, 

it is possible to have only  n  of the L transmissions lost.    A meaningful 

measure of system performance in this case is   FT '(k + l,m),   the fraction of 

the messages which are lost.     In general, 

FL*(k + 1, m) * FL(k + 1, m) 

20 



and the equality holds for   L = 1.    Although F- (k + l,m)   decreases with 

increasing  L,   F, '(k + 1, m) may not. 

The best choice of the  parameters  m,   k,   L,   p,   and P  is a complex 

problem in which many factors must be considered.    Another report will be 

directed toward examining the trade-offs in the problem.     Particular choices 

of the parameters can be compared by using the expressions for  Q(k + 1, m) 

and  FT (k + l,m)   of the report.     The degradation in system performance 

represented by increases in  Q(k + l,m)  and  F.. (k + l,m)   caused by frequency 

hopping in a pseudorandom rather than a periodic manner can be quantitatively 

evaluated. 

21 



APPENDIX   A 

In this section it will be verified that Eq.   (3) is correct.     From the 

definition of conditional probability 

oo 

P(i,m)  = YJ   A(i,m,h)qh 

b=0 

where  A(i, m, h) equals the probability that  i  of the  m  user pairs are trans- 

mitting at a time when the group transmits conditional upon the event that h 

times at which other groups transmit separate this time and the previous 

time that the group transmitted.     Therefore it suffices to show that 

A(i,m,h) =(™) CL-L(l-p)h+1]iC(l-p)h+1]n,_i/ 

[L-(L- l)(l-p)h+1]m . (A.l) 

Consider the case   L = 1 in which the numbers of pairs transmitting 

at successive times are independent.     When there are  h  time intervals between 

successive transmissions of the group,   there are   h + 1 possible times for a 

message to arrive.     The probability that no message arrives for a given pair 

to transmit is   (1 — p) since arrivals at successive times are independent. 
Vi -t-1 

The probability that a message arrives is   1 — (1 — p)        .     Since arrivals for 

different pairs are independent, 

A(i,m,h) = (™) LI - (1 -p)114"1]1 [(1 -p)^1]"1-1 

and Eq.   (A. 1) is verified for   L = 1. 

Z2 



For   L >   1   the numbers of pairs transmitting at successive times are 

not independent so it is useful to employ a different argument.     The state of 

the  m  pairs at any discrete time can be represented by a vector of integers, 

S = (I,, I_,..., I    )  where each  I  ranges from zero to   L.     If  I.  =0  the ith user 12m 6 l 

pair has no message to transmit and if I.  = k  where   0 <  k ^L  the ith user 

pair has a fraction  k/L of a message remaining to be transmitted.     Future 

values of  S depend only on its present value and on future arrivals and trans- 

missions of messages.     Future arrivals and the random element in future 

transmissions are independent of the present value of  S   so this vector repre- 

sents the state of the users in the Markov process sense. 

In general,   there is a number of states in which  i  of the users are 

simultaneously transmitting.     By enumerating the possibilities it is deter- 

mined that this number is ( .  ) (L) .     It can be shown that every state,   in which 

there is the same number of active users,   is equally likely.    Although it is 

not obvious,   this conclusion follows from the symmetry induced by the fact 

that all users have identical statistical descriptions and from the fact that 

whenever  L    changes from 0 to L it subsequently changes to L - 1,   L — 2,..., 1. 

Let  Y     equal the-probability that  i  particular elements of  S  equal   L 

when the group next transmits given that no messages remain to be transmitted 

at the present time,   which is the time that the group completes a trans- 

mission and which is just prior to when possible arrivals can occur.     Let  y 

equal the probability that no messages remain to be transmitted at the present 

time.     Since arrivals occur for   i  particular users, 

u^i-d-pi^na-prrS 
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The quantity   y ,Y   i-s *ne probability that one state which leads to i simul- 

taneous users occurs.     Since there are   (  .  )  (L)     of these states and they are 

equally likely, 

A(i,m,h)=(^)[L-L(l-p)h+1f Ld-P)^1]1 Y 

m 

Since     )      A(i,m,h) = 1, 

i=0 

Y= l/[L-(L-l)(l-p)h + 1]m 

so Eq.   (A. 1) follows. 
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APPENDIX B 

In this section it will be shown that 

lim    P(i,m) = (m) a^l- a)m_1 

T-0 1 

where a = lim     P(l, 1) and P(i, m)   is given by Eq.   (3).     Since   L,  must remain 
T-0 

an integer it is no restriction to let  L = L^n and  T = T_ /n  where  n  and  L« 

are positive integers and   n -* oo.     The probability of no message arrival at a 

given user pair in   h + 1 discrete times,   (1 — p)        ,   must be adjusted to depend 

on  n   so that the mathematical model remains meaningful for all  n.     This 

adjustment can be made in any of several ways,   all of which yield the same 

result as   n — oo.     One way to accomplish this adjustment is to require that 

the probability of no arrival occurring in a given time between transmissions 

of the group remain invariant as   n  varies.     In an interval of length  hT 

seconds there are   1 + h/n  discrete times when a message can arrive (counting 

both end points)since a discrete arrival time occurs every   T   seconds.     There- 

fore,   (1 — p) is adjusted to be (1 — p) .    At an idle user a message 

arrives with probability  p   every discrete time so the number of transmissions 

required to send the expected amount of message which arrives at a given time 

is pL^n.     To make this number independent of  n  we require that  p = pn/n. 

This model provides a meaningful representation of message arrivals which 

is valid for all positive n and  which agrees with the model of previous sections 

when  n = 1.     Eq.   (3) becomes 
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P(i.m) = (™) £   qh { [nLQ - nLQ( 1 - P()/n)h/n+1 f 

h=0 

• [(1 - PQ/H)
1
^

1
]™-

1
} /{ [nL0 - (nL0 - 1) (1 - PQ/n)h/n + > ] m} 

Since the convergence properties of the series justifies interchanging the order 

of the summation and limit and since 

lim    [nL0 - nLQ(l - pQ/n)     r       ] = LQp0 

n-*oo 

lim    r,. /   >h/n+l -        . 
L(1 - pn/n) J =  1 

n-* oo U 

and 

lim    [nLn - (nL. - 1) (1 - pn/n)h/n+1 ] = 1 + L, 
n-*oo 

'0 ~ v"~0 "1M'" ^O'"' " x   '  ~0P0 

lim    P(i,m) = (™)  [L0P0/(1+ L0PQ)f [l/(l+ L^J)™'1 

n-»oo 

oo 

because   /      q,   = 1.     This is the result to be shown since as   n -* oo,   T -»0. 

h = 0 
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